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On A Rank-Based Likelihood

Joshua D. Naranjo)

ABSTRACT

Properties are derived for an estimator (CRL) which maximizes a pseudo-likelihood function based on ranks. Similar
to the MLE, the CRL gives progressively less weight to extreme observations when the tails of the underlying
distribution get thicker. The CRL is more robust than the regular MLE, in the sense of a magnitude bound on each
observation's contribution to the defining equation.
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1. Introduction

Recently, there has been some interest in a form of likelihood estimation called pseudolikelihood
(Besag, 1975), or composite likelihood (Lindsay, 1988). These methods have been used because
they are flexible enough to allow simplifications when maximum likelihood methods are too
complicated or too difficult to calculate. Another reason for using composite likelihood is that it
allows the user to focus on that part of the likelihood which is of particular interest. In this paper,
for instance, we choose to focus on the information contained in the ranks of the observations,
given the actual values.

• Let X] , Xn be an i.i.d. sample from a continuous distribution with cdf F2(x) and pdf f2(x) .

Let R1 , Rn be the ranks ofX] , ....Xn , respectively. Recall that the MLE maximizes the log-

likelihood equation

n

L(2) = I log!2 (xi)
;=1

(1)

•
Replace each component log.li by the conditional event P[Ri = ri * Xi = Xi J, i.e. the

conditional probability that the ith observation has its observed rank Ri = ri given its observed

value Xi = Xi . . The resulting pseudolikelihood function

n

CRL(2) = L log P [Ri = n IXi = xi]
;=1

(2)

•

which we will call the composite rank likelihood, was. first proposed by Lindsay (1988) to
illustrate a method of information assessment for composite likelihoods. The value of 2 that
maximizes (2) will be called the CRL estimator.
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We will consider applications of (2) in estimation of the center of symmetry for continuous
symmetric distributions. It turns out that the resulting CRL estimator is robust in the sense that
each observation's contribution to the defining equation is bounded. Furthermore, the CRL
shares the MLE property of giving extreme observations progressively less weight as the tails of
the underlying distribution get thicker. Finally, it is shown that the CRL coincides with the MLE
at the logistic distribution.

1. The Estimate

•
Let Xi, .. .X, be a random sample for a continuous distribution with cdf F (x-G), where F is
symmetric about O. Hence e is the unique median and mean (when it exists) of the underlying
distribution. Let R, = R (Xi) denote the rank of Xi among XI, .... ,Xit. Let P [Pi = riIXi = xil
denote the probability that the ith case has its observed rank given its observed values. Using
standard probability methods, we have

CRL (e) = L log P ( R ; = r , / X; = x . )

=2:

n-«i

lager; -l)F(x! - 8)
n-ri

[1- F(Xi - 8)]

r i -1

•n-i

=2: log (; - 1) F( yi- 8) i - 1
n-;[1- Ft y, - 8)]

where YI ~ ... ~ Yn are the recorded Xi'S. The maximizing value of CRL (e) is a solution to the
defining equation (or normal equation) d CRL(e) = O. Assuming F has density f, we get

7l{lJJ

=L t i - 1) f (Yi- (j) (n - ; ) f (Yi- B) = 0

F (y; - 8) [l-F(Yi-O)] •

(3)~(y;- 8) - ~J = o.
L n-l

fey; - B)=L--
F (y i - e) [1- F (Yi - 8)]

or equivalently

Thus the gradient V CRL is a weighted and centered version of the cdf. This is not a surprising
result since R/n is a nonparametric versio ofF (Xi-e).

•
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3. The CDF Defining Equation

3

"Ignoring the weights in (3) for now, consider the estimator SF which solves the defining equation

~L [F(Yi-OF) - ~J
n-l

This is a special case of an M-estimator defining equation L\II(Yi-S) = 0 where \II(t) = F(t) - 12.
(Note that \II(t) =1'(t)I/(t) defines the MLE).· For a rigorous development of the asymptotic
distribution of M-estimators, see for example Hampel et. al (1986). Here, we give a heuristic
proof of asymptotic normality of SF.

Under regularity conditions, a first order Taylors expansion of the right side about the true value
S yields

It is well known that F (X - B) has uniform distribution on the unit interval. By the

Central Limit Theorem, (1/.];) L[[J-F(Yi-B)] - 12] = (1/.];) L [ F(Xi-O)-1/2] has

asymptotic normal distribution with mean 0 and variance 1/12. Furthermore, (1/n)l: f(Yi-B)

converges to probability to Eo[f(X -0)] = f/2 (x-fJ)dx = fl (x)dx so that

so that

o~L [ F(Yi - BF) - _1_J + (OF - B) L !(y,-B)

. 2

.]; (OF - B) = _1/.];L[l-F(Yi-B)] _ 1/2

(11 n) L f(Yi-B)

(4)

(5)

'".];(BF-B) (6)

•

This is the asymptotic distribution of the Hodges-Lehmann estimator based on the Wilcoxon

signed-ranked statistic (see e.g. Hettmansperger, 1944). When I(x) is the density of N(O,cr2
) , it

can be shown that



4

fl (x)dx = 1

2cr ..[;(
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(7)

•

Since the MLE at the normal distribution has asymptotic variance cr2
, then the asymptotic relative,..

efficiency of SF with respect to the MLE at the normal is

0-2
ARE = 3_ ~ .95.

[2cr ..[;(f/12 1r

(8)

"We see that SF, or the CRL with constant weights, has relatively high efficiency at the normal
distribution.

4. On the Weight Function

Now we focus on the weight function

j(Yi-B)
WF(Yi-B) =

F (y; - B) [1- F(Yi - B)]
(9)

One property of the regular MLE is that extreme sample values are emphasized less as the tail­
thickness of the underlying distribution increases. This is illustrated by the fact that the MLE for
the thin tailed normal is the sample mean (sensitive to extreme observations), while the MLE for
the thicker tailed double exponential is the sample median (insensitive to extreme observations).
This sensitivity of the estimator to extreme observations reflects sensitivity of the defining

equation itself to extreme observations. The normal MLE, for instance, has defining equation I
(Xi - B) = 0. Note that each term in the sum is unbounded in magnitude. The double exponential

MLE, in comparison, has defining equation Vgn (xi-B) = 0, where sgn (t) is '1,0, or -1
depending on the sign of t. Each term in the sum is obviously bounded in magnitude by 1. This
shows that effects of extreme observations on the MLE defining equation (and hence, the
estimate) at the double exponential is bounded in magnitude.

The following discussion will show that the weight function WF(yi - B) serves the purpose of
regulating sensitivity of the CRL estimator to extreme sample values, depending on the tail­
thickness of the underlying distribution. The gold standard of tail thickness for the CRL2eems to
be the logistic density. We will show that for extreme values of t, WF(t)= j(t)/[F(t) F(t)] gets
larger for j lighter tailed than the logistic, and tends to °for heavier tailed distributions than the
logistic. At the logistic distribution itself, WF(t) is a constant.

For a formalization of ordering by tail weight, we refer to a definition by van Zwet (1970).

Definition 1 Suppose G and Hare cdf's 0/continuous distributions that are symmetric about 0.
G is said to have lighter tails than H (or H has heavier tails than G) ifK1 is convex/or X 2>0.

'.

•
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Note that if F is lighter than G and G is lighter than H, the F if lighter than H, so the definition
provides a weak ordering. If G and H are lighter than each other then we say they are equivalent.
Now if G and H differ only in scale (G = H (x/a)), it can be shown that they are equivalent, so
that tail ordering is a property between families of distributions. Between frequently used
distributions, it can be shown that the uniform, normal, logistic, double exponential, and Cauchy
distibutions are ordered from light to heavy (see Hettmansperger, 1984, Sec. 2.9).

Theorem 1. Let F be continuous and symmetric about 0. Let L(x) = l/[I+exp(-x)] be the cdfof

the logistic distribution. Then for x ~ 0,

'. i. WL(X) = 1.
ii. IfF is lighter tailed than L, then WF (x) is increasing in x.
iii. IfF is heavier tailed than L, then WF (x) is decreasing in x.

Noting that L(x) has density function L '(x) = exp(-x)/[l+exp(-x)f, result (I) is straightforward.
To prove (ii), suppose that F is lighter tailed than L. Then t:' (F(x)) = log(F(x))-log(J -F(x)) is
convex, so that the first derivative of the right hand side is increasing. But this derivative is
wdx), so we are done. Result (iii) is proved similarly, except that t:' (F(x)) is concave.

5. Efficiency at the Logistic Distribution

•
Though the composite rank likelihood (??) looks very different from the regular likelihood(??),
the CRL behaves, more like the MLE than is immediately apparent. In fact, the CRL at the
logistic distribution is also the MLE.

Theorem 2 At the logistic distribution, the CRL and MLEare the same estimator.

Proof. We only need to show that the CRL and MLE defining equations are the same. This
follows from the fact thatjl[F(J-FJ] = 1 and F(x) - Y2 = f'(x)/f(x).

Thus, the CRL at the logistic is fully efficient.

6. Robustness

'. In this section, we consider an estimate to be robust if it's defining equation

n

L lfi(Xi,B) = 0
i=1 (10)

has bounded components I\Vi (x) 1< B for all i and for some B < 00. This reflects an upper
bound on sensitivity of the defining equation to extreme values. Note that the MLE is not robust
at the normal. The defining equation at the normal is

n

L i x.,«, = 0
1=1

which has I\Vi (x) I= Ix Iunbounded. The MLEdoes have bounded defining equation at the
• double exponential:
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•
n

L sgn (X.- 8) = 0
;= I I

where sgn(t) is 1,0, or -1 depending on whether t is positive, zero or negative.

Boundedness of the defining equation is equivalent to the boundedness of the influence function,
which is typically proportional to the function \jI in (10). See Hampel et al. (1986) for details.
Heuristically, the influence function measures the effect of small data contamination on the
estimator.

We now show that the CRL has bounded defining equation for all distributions. Recall the CRL ..•'
defining equation

(11)~(Y;-B)_~J=o.
L n-l

fey; - B)

F (y; - B) [l-F(Yi-O)]
L --'-------

Since I F (y i - B) _( i-I / n - 1 ) I~ 1, then the CRt is robust whenever the weight function

f(Yi - B) / F (Yi - B) [1- F(Yi - 0)] is bounded function. This is true for all distributions with
tails thicker than the logisic. It remains to show boundedness of the defining equation for
thinner-tailed distributions. Without loss of generality, consider the normal distribution, for
which the weight function approaches infinity for extremely small or extremely large values of
the argument. If the maximum order statistics Yn is taken to approach infinity, then its
contribution to the defining equation (11) becomes

f(YIl-B) f(yn- B) - n-=lJ = f(YII-O)

F(yn-B) [1-F(YIl-0)] L n-1 F(yn-B)

which is also bounded in magnitude. On the other hand, if the minimum Yi approaches negative
infinity, its contribution is

f(y/-O) [F(Y/-B) _ J-q = fey/-B)

F(y,- 0) [1- F(y/- B)] n - ~ [1- F(y/- B)] •
The robustness of the CRL is interesting particularly by the way it is achieved, i.e., via the
centering procedure for its defining equation. If shown a defining equation of the form (11) with
the centering term (i-l )/(n-l) covered up, the more likely guesses for it would be 'l'2 or i/(n+ 1).
Neither of these alternatives would achieve robustness of the estimate.

7. Asymptotic Normality

The following theorem follows from standard asymptotic results on order statistics. See, for
example, Serfling (1980) or Chernoff, Gastwirth, and Johns (1967). •
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Theorem 3 Under regularity conditions,

,In (8-0) d >(0, !i0, [J7j{F1(tldtt0

( f F (u ~ 1
3
~u~ (u)] dU)2

(12)

7
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•

An outline of the proof follows. Let Tn(8) denote the left hand side of (3). The first order
expansion about the true value 8 gives

Thus, we have

'" _ (1 / ~Tn(B)
..r;; (B-B)= (1/ n)T'n(B)

It can be shown that the numerator has asymptotic distribution

~ Tn(B)~N (o,! 1 [r!f (F-l(f»] 2 )
"'II n (1- u)2 .L t du

J f3(u) d u
The denominator converges in probability to F ( u ) [I - F (u )1

For the logistic distribution F(x) =lI(l+exp(-x»', it is easy to show that.f(F1(x)=x(1-x). Thus
the numerator of the asymptotic variance in (10) is

! 1 [ r(l- t)dt J2du= 1/12
(l-u)2 1

1

Furthermore, .f(x)/F(x)[I-F(x)] = 1, so that the denominator of the asymptotic variance may be

written [J f 2 (u )d u f Thus the CRL at the logistic has the familiar asymptotic variance

l/I2( f Ii, as it should.

8. Summary

The CRL estimator maximizes the likelihood of the observed ranks, rather than the likelihood of
the observed data. This rank likelihood looks very different from the regular likelihood, but they
are equivalent when the underlying distribution is logistic. Similar to regular' likelihood, the
defining equation for the estimator downweights extreme observations when drawing from a
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thick-tailed distribution, while upweighting extreme observations when drawing from thin tailed
distribution like the normal. .

Despite the fact that extreme observations are given more weight when the underlying
distribution is thin tailed, the CRL remains robust, with the defining equation remaining bounded
over all distributions. This boundedness of the defining equation is achieved, surprisingly, not by
a redescending weight function but by the centering method.
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